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Abstract. The concept of an exchange algebra has recently been introduced by 
Rehren and Schroer in the context of two-dimensional conformal field theories to give 
an algebraic setting to both the dynamics and the locality requirement. Labelling 
the conformal families with two  indices and assuming an interpolaring scheme for 
one of the fields, it is shown that the braiding matrices for a subset of fields in 
Zamolodchikov's and Fateev's (ZF)  parafermionic theories containing all the order 
parameters are identical to those of the diagonal minimal models. W e  recover the full 
spectrum of these theolies modulo integers from the phase condition of the exchange 
algebra even though the subset does not include the parafermionic cuntnts 

1. Introduction 

Several methods have been proposed i n  the past two years t o  tackle one of the re- 
maining problems in conformal quantnm field theories: the problem of classification. 
Most of them are similar and have an important, algebraic content (polynomial equa- 
tions [I], quaiitum group approach [2], exchange a,lgebra [3-51, etc). Even though they 
are aimed a t  the classification problem, they can also be used to obtain quantitative 
information about physical field theories. 

The concept of exchange algebra has been (re-)introduced in the context of two- 
dimensional conformal field theories t o  characterize the algebraic structure of the light- 
cone interpolating fields (also known as chiral vert.ex operators in Euclidean space). 
More precisely it states how these fields can be braided ('commut.ed'). The  braiding 
matrices satisfy simple equations, one of which is a Yang-Baxt,er-type equations. In 
a simple calculation Rehren [4] showed how these structural equations contain much 
information. Indeed, using one furt.lier hypothesis, he was able t,o calcii1at.e t.lie braid- 
ing properties of some basic fields and to obtain tlie spectrum of both the minimal 
models and the WZW theories. His hypothesis was the existence of a field a whose 
fusion rules, for some labelling of the conformal families, are [a] [I] = [ I -  11 @ [I+ 11 for 
I E Zm-l. (This was referred to, i n  [4], as tlie iiit,erpolation scheme of these models.) 
Let us stress that  notliing was used from the  representation theory of the Virasoro 
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or affine algebras, although the proofs of the basic properties of the exchange algebra 
rest upon the SL(2, R), x SL(2, R)- invariance of the theories. 

In the present paper we apply these ideas to another set of quantum field the- 
ories (namely the Zamolodchikov and Fateev (ZF) parafermionic theories [6]). The 
defining equations of the exchange algebra will again show their power by giving the 
full parafermionic spectrum, among other things. Section 2 surveys definition of the 
exchange algebra by Rehren and Schroer. Section 3 applies these ideas to a specific 
scheme of interpolation; these steps are the following: description of the set of fields 
and their interpolationg scheme (section 3.1), connection between the braiding matri- 
ces for this set and those for the diagonal minimal models (section 3.2) and solution 
of the phase condition (section 3.3). In section 4, we explain the relationship between 
the set chosen in section 3.1 and the field content of parafermionic theories and draw 
some conclusions. 

L Boivin and Y Saint-Aubin 

- - 

2. The exchange algebra 

In this section we write down the defining equations for the exchange algebra 131. 
Conformal field theories can be constructed on Hilbert spaces which are direct 

sums of irreducible representations of a symmetry algebra A x d. Both subalgebras 
A @ 1 and 1 @ d  are associated with one of the light-cones and contain the Virasoro 
algebra. As usual, these representations are taken to be unitary and the energy- 
momentum tensor is supposed to be conserved and of conformal dimension 2. We 
add the further requirement that  the Hilbert space contains only a finite number of 
irreducible representations (irreps) of A and d. Hence 

31= @31*@?fe 
e,, 

where ‘Ru and 31, are irreps of A and d respectively and where the pair (@, 6 )  takes 
its values in a finite set. (In the minimal models, A and d are the Virasoro algebra 
and in the WZW models, a Kac-Moody algebra.) In general, the chiral algebra A 
could he large enough for a given irrep to contain several irreducible highest weight 
representations of the Virasoro algebra whose weights are not  necessarily equal to 
modulo Z. We shall come back to this problem in the last section. For the rest of the 
present one, we suppose that all the irreps of the Virasoro algebra in a given irrep of 
A have the same highest weight mod Z.  

Each primary physical field @(z+,t-) is characterized by a pair of conformal 
dimensions (ha ,  h,) and can b e  written as a sum of products of interpolating fields: 

he 
I p  (z+) is an operator which is zero on all 31? except XHP and whose image is 

Io Pp. 
h e  
la are often called c h i d  uertez operators (in Euclidean 

where 

in ER. In other words, if P, denotes the projector on H7, then ,,Ip = P, 

The interpolating fields 

ha h e  
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space). The s ( , , * , ~ ~ )  (a”) are complex constants tha t  depend on the normalization of 

the interpolating fields o1 Ip. 

decomposed in terms of conformal blocks[7]: 

t O I >  tal 

h e  

Any n-point corr’elation functions (@l(zt, z;)Q2(z$, z;) . . .  a,(.:, z;)) can be 

(@1( .9 . .  .@“(z:)) = F{p) (4,. . . F@] (q,. .. , In) 
where the { B } s  are multi-indices labelling the  various subspaces Xp, the fields are 
interpolating from and to 

To insure locality of the theory, the conformal blocks F and F have t o  satisfy intricate 
conditions. These clearly cannot be formulated in terms of a single light-cone coordi- 
nate. To help write down the locality requirements, Rehren and Schroer introduced 
an exchange matrix which characterizes the exchange of two interpolating fields in the 
conformal blocks. The  definition is: 

(2.1) 
(From now on, the ‘f’ indices will be dropped. The  requirement of locality ties 
the matrices R+ and R- and the g [ h e , h e )  ( a , p ) ,  However, we shall not discuss this 
relationship here.) The  following three basic properties are satisfied by R: 

( B O O > )  (i) ‘ 7 ~ )  (z l r  z2 ) ]p I ,p :  depends on zl and z2 ouly through their relative positions. 

Moreover, if z12 = sgn(xl - x 2 )  = f, then 

(2.2) 
Hereafter 

are related through the following rela- 
tionship: 

(2.3) 
(iii) Braid relation. The  exchange matrices satisfy 

The  relationships (2.1)-(2.4) define the exchange algebra. 
For the minimal and WZW models, Rehren and Schroer [3]-[4] gave the solution 

of these equations for one fundamental field (see section 3.2) .  Recently, Felder el a /  
[8] have extended their solution to the whole field content of the minimal models. 
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3. The exchange algebra for a new interpolating scheme 

In this section, we compute the exchange algebra and the associated spectrum for an- 
other interpolating scheme. In the next section, the set of fields and fusion rules con- 
sidered here will be shown to be intimately related to parafermionic theories; namely, 
they will be identified with a subset of the fields in these theories containing the order 
parameters. We delay the physical discussion to this latter section. 

3.1. The inlerpolating scheme 

Consider the following set of conformal families 

L Boiuiii and 1’ Sainl-Aubin 

A = {[&I,  0 < l < N ,  m 3 I and m = Imod2) (3.1) 

together with the following fusion rules 

min{lltl~,2N-l,-12} 

(3.2) 
I [4!All[4kl = c [4ml t m x l  

and generating by action on the vacuum a Hilbert space of the form 

As mentioned previously, i t  will be argued in section 4 that A corresponds to a subset of 
mutually local fields in ZF parafermionic theories, namely that it is the smallest ensem- 
ble containing the conformal families of the order parameters ([+!I, k = 0,. . . , N - 1) 
and closed under the OPE. Any family of A is generated by OPE of fields belonging to 
the family [4;]: 

with the obvious omission when I - 1 = -1 and I + 1 = N + 1. (The fusion rule of 
the field [4;] will be referred to as the ‘interpolating scheme’ in what follows. See [4].) 
Hence the product [4:][4:] contains the families [4;] and [&I; from the latter one gets 
[$:I and [&] and so on. The exchange algebra of any of the fields in A can then be 
obtained from those of the field 4; which plays a similar role to the field 4(1,2) in the 
minimal models and considered by Rehren [4]. For this reason the exchange matrices 
for the interpolating components of 4; are called the fundamental braiding matrices .  
Due to the fusion rules (3.4), there are only two sets of interpolating fields building 
4; on each light-cone: 

Hence, the scheme (3.4) is similar to the one used in [4]; the difference lies in the 
additive charge y~ that specifies the transformation properties of the field under the 
action of izN x iz, (discussed later). We shall show that the fundamental exchange 
matrices are independent of m and hence are identical to those of the minimal models. 
The charge structure, however, introduces a new freedom to the spectrum of conformal 
weights compatible with the phase condition of the exchange algebra. This freedom 
allows for the full spectrum of the parafermionic theories to he reproduced. 
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I 

I I 

m m + 2  m + 3  m + 4  

Figure 1. The palhs for the chain (3.8). 

3.2. The fundamental braiding matrices 

In this section, it will be proved that the fundamental braiding matrices (those for the 
field 4;) 

m = - [R[""t2);("m)] 1,1);(1,1) (3.6) 

are in fact independent of 7n. To do soI it is also lielpful to consider the braiding 
matrices 

The I 

(3.7) 

. tl steps of this proof consists of proving that (i) RZ2,' is indc fent of m; 
(ii) x(+,) is independent of both l and m; (iii) there exists a normalization of the 
interpolating fields of 4; such that y:,nl) and  8;,m, are both independent of l and m; 

and (iv) RZ is independent of m. 
The braid relations (2.4) for the chains of interpolating fields: 

' /  

will be used to  prove propertles i i j  and (ivj. For each initial sector ( l ,  mj, there 
are four different chains compatible with (3.2), that  is four pairs ( l o , l l ) :  { ( I  + 2,1 + 
l), ( l , l , ) ,  ( / , I  - l), ( I  - 2 , 1  - 1)) corresponding to the paths labelled (1) to (4) on 
figure 1. We have summarized i n  table 1 the relevant indices {f l i ,oy, p; ,py) - 
{ ( l ; ,  m;), ( I T ,  my), ( I ; ,  mk), ( I ; ,  m;)) necessary to specify the braid relations: 
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Table 1.  Intermediate sectors for three fields in equation (3.8). 

Path (1) Path (2)  Path (3) Path (4) 

Property (i) follows immediately from the Yang-Baxter equation (2.4) for paths (1) 
and  (4). . .  

Property (ii) can be obtained similarly; the braid relations for the chains (one pa th  
for each ( I ,  m)): 

give x ( ~ , ~ ~  = xI, and the two sets of chains: 

give  XI+^ = x,. 
Property (iii) is more delicate. T h e  field 4.: is the only field obtained by fusing 4; 

(1,3) 
and 4;.  The  interpolating field (,fl,,nt31 I can hence be  obtained by either 

or 

where ~ I i m  reguiarizes the divergent Wiison product [3]. The o;,,,,, and $,,,, are coii- 
s tan ts  tha t  depend on the normalization of the interpolating fields. Since the exchange 
matrices depend only on the  relative position of the arguments of the braided fields, we 

(Ifl .mtS);(l .m) (I*2,"Lt4) ; ( l .m) 

Doing so, we conclude tha t  the y;,,,,, are independent of I and m if the ratios are 
can use either of these two expressions to express R (1,3);i0,21 and '(l,l);(I,3) 

( l * l , m + s ) ; ( b )  and 

, property (iii) for O;,m) follows, again under the same assumption 
on the earlier ratios. The  condition on these ratios can be achieved by recursively 
normalizing the interpolating fields. 

Using properties (i)-(iii),  the last property now appears to be an inimcdiate con- 
sequence of the braiding equat,ion (2.4) for the paths (2) and (3)  of thc chain (3.8) 
(see table 1). This ends the  proof. 

are also independent of 1 and in. Similarly, calculating R(o,2);~l,31 
( I f 2 , m t 4 ) ; ( l , m )  

'(1:3):(1.1) 
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Since the fundamental exchange matrices are independent of m, we only need the 
I part of the fusion rules (3.4) when writing relation (2.4) for al = a2 = a3 = (1,l) .  
Hence RI'" verifies the same Yang-Baxter equations as those verified by the matrices 
[R1'tL~'cl] of [4]. There the general solution was found to he 

~ 0 ~ 0  = = 0 
~ l - l , l + l  - Rl+l,l-l - 
, 

-w - 

s ( l ) s ( l+  2) (3.10) 
s(1 + 1) s y 1 +  1) = q( -u)1/2 P"1 1y1,1+1 

with , 
2aip 

(-U) = exp - 
N + 2  

with p and N + 2 coprime 

where A I  and r~ are complex numbers left undetermined by equation (2.4). (In [4], the 
identity family was labelled by (1) instcad of (0) as here, and the number of families 
was q - 1 instead of N + 1.) This is the solution of the braid equations for the field 
4;. 

9.3. Solution of the phase condition 

As the final step in constructing the exchange algebra, we solve phase condition (2.3) 
for the scheme (3.4).  Knowing RI", these condit,ions provide us with constraints on 
the spectrum of conformal weights of the families [4!,,]. 

For the case a t  hand, the braiding matrices R$) do not depend on m as shown 
earlier and the phase condition is 

For each I and m with the same parity, this equation should be writtcn for I ,  = I 4 2 
(and then I ,  = 1; = /: = 141) and for I ,  = 1 (and then 2 ,  = 1: = I A I  and  the sum over 
1; assumes both values I f  1). The cases I = 0 or 1 = N have to be treated separately. 
The resulting equations obtained using (3.10) are (the notation e ( h )  = exp(2aih) is 
used): 

I ,  = I =  0 :  +p,, +/e,+?) = v2e(2hk,t1) (3.11) 

I ,  = I =  N : (3.12) 
I ,  = I & 2 (with I, # 2 and I, # N  + 2 )  : 

(3.13) 

e ( h E  + h E t 2 )  = v 2 e ( 2 h $ ; : )  

e ( / I ! , ,  + /(:j2) = (71w) 'e (2h! , f :~ )  
I ,  = 1 = 1 ,  , . . , N - 1 : 

1 , -  - 1" , - - / + I :  e( / ( , ,  + /L!,,+~) = v 2 ( - w ) e  (h::l + h!,;i1) (3.14) 

I 1 -  - I +  1 and 1; = 1 - 1 : e (h$ i l )  = ( -w) l t l  e(h!&). (3.15) 
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The  cases ( I ,  = I: = I - 1) and  ( I ,  = I - 1, I;' = I + 1) give equations equivalent to 
(3.14) and (3.15). 
~I ~I 

We now proceed to the solution of equations (3.11)-(3.15). 'Equation (3.15) allows 
us to write e(h!,,) in terms o f  e ( h k )  of e ( h h )  depending on the parity of I .  The  result 
is 

(-w ) f('+*)e(h!') for I even 
for I odd. 

e(h!,,) = (3.16) 

Moreover equation (3.16) can now be used to express equations (3.12)-(3.14) only in 
terms of e(h;) and e(h!,,). In fact, a direct check shows that equations (3.13) and 
(3.14) are all equivalent to either one of the following equations: 

(3.17) 

(Notice tha t  the first one is precisely (3.11).) Equation (3.12) becomes 

( -w)Nt2e(h: ,  + h k t 2 )  = q2e(2hL+,) 

(-w)N-'e(h!,, + hAt2) = q 2 e ( 2 h k t l )  

if N i s  even 

if Nis  odd 

Comparing with equations (3.17), we are forced to set 

(-W)N+2 = 1 

or, in other words, 

( -U )  = e *nip/(N+z) E z, (3.18) 

Hence, the set of equations (3.11)-(3.15) is equivalent to equations (3.16)-(3.lS). 

(m + 2),  we get 
By multiplying the first equation of (3.17) for two consecutive values of m and 

e(h:+,) = q'(-w)'e(Zh:,+, - h k ) .  (3.10) 

Similarly, we can obtain the following equation for the odd values of m: 

To s ta r t  the recursive solution of these equations, we need to fix the first values of 
h!,,s. Since the family [d:] contains the identity, e(h:) = 1. Let us  write hi  = 8. Then, 
by equation (3.17), we get: e ( h i )  = q2e(20) and e(hA) = q 6 ( - w ) ' e ( 3 O ) .  These values 
are sufficient to obtain the full solution of equations (3.10) and (3.20): 

e(ho "l ) = q m ( m - l ) ( _ w ) : m ( m - 2 )  4 4  (3.21) 

and 

4 h L + l )  = p ( m -  ?m(m-2)+ ? e ( m ~ )  
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Further constraints on Q and B can be obtained by using the fact that  the families 
[&] and [4k+2N] have the same spect.rum modulo Z. These cyclic conditions e(/($) = 
e ( h R t Z N )  and e(h!,,+,) = e(h!,,tltzN) lead to the following equation: 

3 N'tmN-N 2~ 
i q 4 ( - 4  1 Q e ( 2 N B )  = 1 

which should hold for any m.  Hence [ ~ ~ ( - w ) ~ ] ~  = 1 and 

Q ~ ( - w ) ~  = e ( K / N )  (3 .22)  

for a certain K E Z. Hence, qz can be expressed as 

3P 
" = e (& - 2 ( N  + 2 )  +') (3 .23)  

where E = 0 or 1. This leaves the constraint ( 1 1 ~ e ( 2 0 ) ) ~  = 1 which can he solved for 
e: 

2r - K - 2 c N ) ( N  + 2 )  + 3pN 
4 N ( N  + 2 )  

h i = @ = (  

where a new parameter r E Z has been introduced. 
Putting ( 3 . 1 6 ) ,  (3 .21)  and (3 .24)  together, the spectrum becomes 

(3 .24)  

There is some redundancy i n  the choice of the parameters r, ti and E .  Since K E Z and 
z = 0 or 1, the new parameter i given by 

-=(-+') K ti 

4 N  4N 2 

turns out to always be integer. Moreover, defining i = T - i, the full solut~ion of the 
phase condition ( 2 . 3 )  depends on the paramet,ers, p ,  i and k E Z as 

p / ( / + 2 )  i m  km2 
e(h!,,) = e  ( 4 ( N + 2 )  +-+-) 2N 4N (3 .25)  

All the possible spectra of the theories having a field [d:] wit,h fusion rules as in 
( 3 . 4 )  are thus determined by the striict,ure of the exchange algebra (up t.o int,egers). 

4. Concluding remarks 

Parafermionic theories were introduced by Zamolodcl~ikov and Fateev [GI as candidate 
conformal theories for reproducing the critical exponents of the Z N  x Z N  critical 
autodual systems on a two-dimensional lattice. For our purpose the field content of 
these theories is summarized by the following enumerat.ion of conformal families: 

{[&,,,,I; I ,  i z 0 , .  . . , N ,  Vm, tfi  such that m = I iiiod 2,7ii = imod  2 ) .  ( 4 . 1 )  I f  
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Besides determining the transformation properties of a field under the action of 
ZN x Z N  i ts  charges m and also specify the monodromy properties of i ts  cor- 
relation functions. If &(zl, fl) has charges (ml ,  m,) and &(zz, T z )  has charges ( n ,  f i ) ,  
then any correlation function containing the product q5,& picks up a phase factor 
e-xi(mn-aia)/N under the following manipulation: z1 circles r, clockwise while E ,  cir- 
cles iz anticlockwise. (Note t h a t  as usual r and f are independent complex variables, 
z = I + iy and f = I - iy, I, y E @, with the Minkowskian section corresponding to 
- - - a ? l m ” ” J . . -  :-I - 1 r m \ m  C . I I  ...... : > L . L  ~ . . . , , ~ ~ , ~ ~ ~ , ~ ~ ~ , ~ ~ ~ ~ ~ ~ ~ .  
.L - A = m uu y - - I &  , .L c m., I W O  IMUS are saiu b o  ue rriu~uaiiy local wneri LILW 

phase is trivial. 
If ( h ] , , h k )  are the dimensions of the primary field &,- then we have h!,,,,, = 

h k m o d Z ,  hk,,, = h k m o d Z  and 

L Boivin and Y Saint-Aubin 

for - I  < m < I 

for I < m < 2N - I .  

A AT 
I’, 

h!, = (4.3) 

4 N  

Similar expressions hold for &k.  
The  fusion rules for the parafermionic theories were given by Gepner and Qiu [9]: 

m ~ n { l ~ t i ~ , Z N - ( l ~ t l ~ ) )  m i n ( i , t i z , z ~ - ( i , + i 2 ) )  . 

[q5!5J [,#J!&J = c c [4!!&, tm2,m1 tfiJ (4.4) 
i=lil - i,I 1=11,-121 

where the sums run over I and T such that I = I ,  - 1, mod 2 and f = f, - r, mod 
2. Certain conformal families o n  the right-hand side must have a vanishing structure 
constant in order for (4.4) to behave properly under rotations. For example, special- 
izing to the case where /, = ii, mi = mi, i = 1 ,2 ,  we have two mutually local fields on 
the left. T h e  spin of the fields on the  right-hand side must then vanish (h ] ,  = h k )  
which implies I = 

Now identify [#],I of the  previous section wi th  [4!!&,,J for the proper domain of m. 
The  fusion rules (4.4) are then seen to be identical to (3.2) provided this comment is 
taken into account. Moreover, if we set p = 1, i = -1 and i = 0,  the spectrum (3.25) 
matches the earlier one. 

A comment should he made on the current algebra acting on the parafermionic the- 
ories and i ts  relationship with the  chiral algebra discussed in section 2. Parafermionic 
theories contain conserved parafermionic currents. These generate an algebra (inti- 
mately related the Z-algebra of Lepowsky and Wilson [lo]) which is not a Lie algebra. 
The  representations of this algebra contain weights which are not necessarily spaced 
by integers (see [GI and [9]-[lo]). Hence, idenrifying this parafermionic algebra with a 
chiral algebra would not have been suitable when discussing the braiding properties 
of a parafermionic family (associated wi th  an irreducible module) since fields whose 
weight differences are not integer have different monodromy properties. 

throughout the computations, the spectrum also contains the conformai weights of 
the (non-local) parafermionic currents. This might seem a priori a miracle. However 
it simply stems from the fact t ha t  the light-cone interpolating fields of [#;I are also 

( 0  0),(*,8) are the building blocks of these currents; only that the various coefficients g(,,;, 

different for the latter (see section 2 ) .  

for a general N. 

I 1  One could remark tha t ,  even though we have only used local fields #!,, = 
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Finally (and this is probably the most striking result), it  should he emphasized 
tha t  no  explicit knowledge of either the Virasoro or parafermionic algebras was used 
in section 3. The  only hypothesis characterizing the theories were: 

(i) the existence of a field [#;I with the  specific fusion rules (3.4); and 
(ii) the decomposition of the Hilbert space as 

I t  indicates tha t  the classification of conformal quantum field theories using, for 
example, the rational equations from Moore and Seiberg [l] or  the quantum groups 
language might follow a lattice-theoretic approach where the (periodic) lattice would 
represent the decomposition of the Hilbert space and where the basic periods would 
encompass the  fusion rules of the interpolating fields of a well-chosen subset of fields. 
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